Problems for practice:

Find the derivative:	3. When $p = 12$ then $q = 600$, when $p = 20$
1. $y = (x^2 + 3x)^4 \ln(5x + 2)$	then $q = 400$.
2. $y = e^{5x+2} \ln(2x-3)$	a. Find a function relating p and q .
	b. Find the corresponding revenue function
4. Given the demand function: $q = 1200 - 40p$,	5. Yearly revenue from 2002 (t=0) to 2008
and a per-item cost of \$5, with an overhead	(t=6) is approximated by :
cost of \$200	$R =16t^3 + 1.4t^2 + 2.1t + 2.4$ (millions of
a. find a revenue function	dollars)
b. find a profit function	When is the increase in revenue speeding up?
c. figure out how to get the maximum profit.	When is it slowing down? When is the revenue
When the profit is maximum:	increasing most rapidly?
i. What is the production quantity?	
ii. What is the price?	
iii. What is the profit?	
6. Given a cost function of	7. Integrate:
$C(x) = 15,000 + 16x + .03x^2$ (for x items)	a. $\int 3x^5 + 1.5x^2 - 8x + 3dx$
Find the minimum average cost—tell both the	rx 2 4
production level (x) and the minimum average	b. $\int \frac{d^2}{3} + \frac{1}{x^2} + \frac{1}{x^2} dx$
COSL.	c. $\int x e^{x^2 + 3} dx$
	- 5
	d. $\int \frac{3}{3x+2} dx$
	e. $\int (2x+3)\sqrt{x^2+3x+5} dx$
8. The marginal cost of producing the <i>x</i> th box	
of widgets is $12 + \frac{3}{x^2}$. The cost to produce 1	
widget is \$500. Find the cost function $C(x)$.	
Find the total cost to produce 100 widgets.	

Answers:

1.
$$y' = 4(x^2 + 3x)^3(2x + 3)\ln(5x + 2) + \frac{5(x^2 + 3x)^4}{5x + 2}$$

2. $y = 5e^{5x+2}\ln(2x-3) + \frac{2e^{5x+2}}{2x-3}$
3. There are two sets of correct answers:
a. $q = -25p + 900$
b. $R = -25p^2 + 900p$
b. $R = -.04q^2 + 36q$

4. There are two sets of correct answers to a and b:

a.
$$R = 1200p - 40p^2$$
a. $R = 30q - .025q^2$ b. $P = 1400p - 40p^2 - 6200$ b. $P = 25q - .025q^2 - 200$

The correct answer to c can be found from either choice of b. The complete answer to c is: P'=1400-80p=0 P'=25-.050q=0

$$p = 17.5$$
 $q = 500$

c. figure out how to get the maximum profit. When the profit is maximum:

i. 500

ii. \$17.50

iii. \$6050

5.

$$R = -.16t^{3} + 1.4t^{2} + 2.1t + 2.4$$
$$R' = -.48t^{2} + 2.8t + 2.1$$
$$R'' = -.96t + 2.8 = 0$$
$$t \approx 2.9$$

rate of increase is speeding up from 0 to 2.9 which is beginning of 2002 to end of 2004 rate of increase is slowing down from 2.9 to 6 which is end of 2004 to beginning of 2008 revenue is increasing most rapidly at 2.9—end of 2004.

6. $\overline{C}(x) = \frac{15,000 + 16x + .03x^2}{x} = 15,000x^{-1} + 16 + .03x$	
$\overline{C}'(x) = -15,000x^{-2} + .03 = 0$	Minimum average cost occurs when making
$\frac{-15000}{x^2} =03$	707 items, and the minimum average cost is \$58.43
$15000 = .03x^2$	
$500,000 = x^2$	
<i>x</i> = 707	

7. a.
$$\int 3x^5 + 1.5x^2 - 8x + 3 \, dx = \frac{x^6}{2} + .5x^3 - 4x^2 + 3x + C$$

b.
$$\int \frac{x}{3} + \frac{2}{x} + \frac{4}{x^2} \, dx = \frac{x^2}{6} + 2\ln|x| - 4x^{-1} + C$$

c.
$$\int xe^{x^2 + 3} \, dx = \frac{1}{2}e^{x^2 + 3} + C$$

d.
$$\int \frac{5}{3x + 2} \, dx = \frac{5}{3}\ln|3x + 2| + C$$

e.
$$\int (2x + 3)\sqrt{x^2 + 3x + 5} \, dx = \frac{2}{3}(x^2 + 3x + 5)^{3/2} + C$$

8. $C'(x) = 12 + \frac{3}{x^2}$ $C(x) = 12x - \frac{3}{x} + C$ C(1) = 12 - 3 + C = 500 C = 491 $C(x) = 12x - \frac{3}{x} + 491$

The total cost to produce 100 widgets is \$1690.97